
Theoret. Chim. Acta (Berl.) 62, 265-275 (1983) 

THEORETICA CHIMICA ACTA 

�9 Springer-Verlag 1983 

Topological Localized Molecular Orbitals 
I. A Localization Method in the HMO Framework* 

Juan Carlos Paniagua 

Departament de Qufmica Fisica, Facultat de Qu/mica, Universitat de Barcelona, Barcelona-28, Spain 

Albert  Moyano 

Departament de Qufmica Orgfinica, Facultat de Qufmica, Universitat de Barcelona, 
Barcelona-28, Spain 

Luis Maria  Tel 

Departamento de Qufmica Ffsica, Facultad de Qufmica, Universidad de Salamanca, 
Salamanca, Spain 

Intrinsic and external 7r-orbital localization procedures which rely only on 
molecular  topology are proposed and discussed. Localized molecular orbitals 
obtained by application of these procedures are referred to as "topological 
localized molecular  orbi ta ls ' .  

Key words: Topology - Localized molecular orbitals - H/ickel method.  

1. Introduction 

Localization of molecular orbitals (MO's) in polycyclic conjugated hydrocarbons 
offers special interest due to the peculiar features of the resulting orbitals, 
particularly in connection with the concept of local aromaticity [1], and has 
deserved considerable attention [2]. Ruedenberg  and coworkers [2a, b] first 
analyzed energy [3] localized MO's  (LMO's) obtained f rom H/ ickel -Wheland 
canonical MO's  (CMO's).  The bielectronic integrals necessary for the localiz- 
ation, which are not available from the Hfickel -Wheland calculation, were 

* Presented in part at the European Symposium of Organic Chemistry II, Stresa, Italy, June 1981 
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approximated following an earlier suggestion made by Mulliken [4] which implies 
the evaluation of a Coulomb repulsion integral for every interatomic distance. 
Lipscomb et al. [2c] employed Boys [5] criterium to localize CMO's  calculated 
in the partial retention of diatomic differential overlap approximation [6] for 
some conjugated polycyclic systems. The localization was carried out both with 
and without the constraint of o--~- separation, obtaining ~ ' -LMO's  in good 
agreement  with the calculations of Ruedenberg,  in the first case, and pairs of 
banana  type orbitals alternating with single bonds in the second. However ,  
structures of this type are not always obtained when all the occupied MO's  of 
a conjugated molecule are localized simultaneously: structures with tr-zr separ- 
ation result for some monocyclic aromatic  ring systems [7] and even mixed 
structures have been found [2@ On the other hand, the type of structure obtained 
often depends on the localization criterium being used [8]. Notwithstanding, o--~ 
structures always correspond to stationary points of the localization sum hyper- 
surface [8]. Moreover ,  the information of interest in aromaticity studies can be 
drawn from , r -LMO's ,  so that the utilization of simple ~r-type calculations for 
comparat ive  localizations in related conjugated molecules is justified. Since in 
these systems topological methods for the calculation of 7r-CMO's have proved 
so successful [9], it seems reasonable to expect that L M O ' s  can be obtained also 
by exclusively topological criteria. This would avoid having to resort  to additional 
information concerning molecular geometry  when topological CMO's  are local- 
ized [2b], and would constitute the most coherent  way to localize MO' s  obtained 
f rom H/ickel calculations 1. 

In the present  work we develop a localization method for ~r-MO's which relies 
only on molecular topology, and we discuss several variants of it which can be 
related to previously proposed criteria. The method has been applied to a wide 
variety of conjugated compounds,  giving results in good accordance with those 
obtained by using more  sophisticated methods [2a, b, c]. Some of these results 
will be presented in the second publication of this series [11]. 

2. The Localization Sum in the Huckel Approximation 

Let  {Xr}r=l ..... be the set of 2pz atomic orbitals (AO's)  centered on the carbon 
atoms of a conjugated hydrocarbon,  and let ~bl be a MO built as a linear 

1 In reference 2d a modification of the Magnasco-Perico external localization method [10] is 
proposed in order to localize ~--MO's without the inclusion of any data other than those obtained 
from a Hiickel calculation. However the method is incorrectly settled since it is stated that localization 
is attained by minimization of the quantity 

E EPm.Hm. 
i m , n  

(where index i refers to the prefixed bonds of the structure, and m, n run over the AO's contributing 
to bond i) which is clearly invariant under unitary transformations of the MO's. Nevertheless we 
feel that what the authors probably did was to apply the Magnasco-Perico method substituting the 
overlap matrix by the Htickel matrix H in the definition of local orbital population (Eq. (8) of Ref. 
[10]). 
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combina t ion  of these A O ' s  (L CAO) :  

r - XrC,., = xCi. (1) 
r 

H a r t r e e - F o c k  equat ions  for  the n C M O ' s  cor responding  to a 2n-e lec t ron  closed- 
shell configurat ion reduce,  in the H/ickel  formalism, to 

T C  = C e  (2) 

where  

T is the topological  matrix:  
Trs = 1 if a toms r and s are o--bonded 

= 0 otherwise,  
C is an m • n matrix whose  columns are the Ci's, and 
e is a diagonal  n x n matrix whose  diagonal  e lements  are the C M O ' s  energies 

expressed in/3 units and taking a -- 0 as the origin. 

A n  or thogona l  t ransformat ion  2 of the C M O ' s  leaves Eq.  (2) invariant,  i.e. 

C '  = C O ,  

0 '0  = O0 ~ = 1 

implies 

T C '  = C '  e' 

with 

E:' = Ot~.O 

where  e' is, in general  no longer  diagonal,  but  still a symmetr ic  matrix. This 
flexibility allows to select a set of M O ' s  which exhibit a max imum degree  of 
localization according to any p rede te rmined  criterium. 

Intrinsic localization criteria can be expressed in a general  fo rm as the maximiz-  
at ion of a localization sum 

S [4~,&~ kb~4~,] (3) 
i 

where  

[cklcks Jcbkckl] -- I d~, (rl)qbj(rl)f(r12)4Jk (r2)~b 1(r2) dr1 dr2 

f(r12) being a different funct ion of r12 for  each cri terium: 

f (r12) = rT~ for the E d m i s t o n - R u e d e n b e r g  cri terium [3] 

= -r~2 for the F o s t e r - B o y s  cri terium [5] 

= 6(r12) for  the yon  Niessen cri terium [12]. 

2 We can always choose the coefficients Cr~ to be real. 
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Introducing the LCAO expansion (1) in the localization sum (3) we obtain 

s = 

i rstu 

and, making use of the zero differential overlap (ZDO) approximation 
2 

Xr(rl)Xs(rl)  d r l  = ~rsXr ( r l )  d ' r l  

we can write 

S - C~LrtCti  (4) 
i rt 

where a matrix L has been introduced whose elements are defined as 

lx,x,] (5) 
and which will be referred to as the "localization matrix". Eq. (4) can be expressed 
in a more compact way by introducing a new matrix Q with elements 

Qri  ~ ( C i C [ ) r r  = C r  2 

giving 

S = Tr  (QtLQ). (6) 

The calculation of the elements of matrix L requires the knowledge of molecular 
geometry in the case of Edmis ton-Ruedenberg  and Foster-Boys criteria and, 
in any case, the explicit functional form of the basis orbitals. Alternatively, those 
elements could be parametrized. Nevertheless, neither these parameters nor 
molecular geometry are defined within the H MO  formalism; moreover,  the 
functional form of AO's  is not necessary for carrying out an H MO  calculation. 
It is then clear that it would be desirable to dispose of topological expressions 
for the localization matrix. 

3. Topological Localization Matrices 

In the case of Edmis ton-Ruedenberg  criterium, the matrix element Lrt is the 
Coulomb repulsion integral between 2pz AO's centered on atoms r and t. The 
behaviour of this integral as a function of the internuclear distance Rrt has been 
studied for different kinds of AO's,  and several approximated analytical 
expressions have been proposed for that function [13]. In every case the following 
limiting behaviour is found: 

lim Lrt oc 1/Rrt 
R r t  ---~ oo 

as could be expected from a simple qualitative reasoning. Among the various 
kinds of topological matrices 3 that have been introduced [14] the one most suited 

3 The term "topological" refers here to any matrix used to describe molecular topology. We have 
also used it for matrix T, defined in the previous section, which is the most widely used topological 
matrix. Nevertheless its meaning will be clear from the context in every case. 
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to mimic this behaviour  is the distance matrix D [15], whose elements Drt are 
equal to the minimum number  of tr-bonds connecting atoms r and t. Expressed 
in terms of this matrix the topological localization matrix (TLM) corresponding 
to the Edmis ton -Ruedenbe rg  criterium could be: 

Lrt = 1 for r = t 
(7) 

= k/Drt  f o r r # t  

where a constant proportionali ty factor expressing the units of L is indifferent 
for our purposes,  and k is an adjustable pa ramete r  which will be discussed later 
on. 

Even though being purely topological 4, definition (7) can be further simplified: 
since H M O  calculations show that neglecting the matrix elements of the effective 
~--monoelectron hamiltonian between A O ' s  on atoms not o--bonded gives unex- 
pectedly good results, it seems reasonable to try doing a similar approximation 
for the above localization matrix, i.e. to take 

Ln = 8rt + kT~t (8) 

where 8~t is the Kronecker  delta. 

In the Fos ter -Boys  criterium, integrals (5) with r # t are, barring their sign, a 
measure  of the distance between A O ' s  Xr and Xt (at least when atoms r and t 
are far enough apart), and the following limiting behaviour  can easily be verified 

lim L,., oc - R  r 2 
R rt -~ o o  

while diagonal elements are related to the degree of concentration of the 
corresponding AO.  Their  topological version could then be 

L~ = - (&t  + kD~t) 

where again paramete r  k should be given an adequate  value. 

In this case it is not clear that a simpler expression can be given in terms of 
matrix T. On the other hand, maximization of the localization sum as expressed 
in Eq. (3) is not the most efficient way of effecting Boys localization [5c], so that 
we will not further consider this TLM. Notwithstanding, we will show later on 
that taking expression (8) for L amounts  to making a simple topological transla- 
tion of Boys criterium. 

Von Niessen integrals (5) reduce in the Z D O  approximation to 5 

L,-t =SrtD(,.x,.l~(rX,.] 

and so, not even molecular topology is needed to get a simple parametr izat ion 

4 Actually, it can be shown [15] that matrix D is a simple function of matrix T. 
s For a recent localization method based on the application of the ZDO approximation to the von 
Niessen criterium, see Ref. 16. 
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for  them: 

Lrt = 8r,. (9) 

This can be viewed as a part icular  case of definition (8) with k = 0. 

Let  us analyze m o r e  deeply  the T L M  defined by Eq. (8), for  which we will 
reserve hencefor th  the initials TLM.  In o rder  to verify that  its maximizat ion 
leads to L M O ' s ,  we shall consider  the contr ibut ion made  by a single M O  to the 
localization sum, i.e. 

Si = ~ OriLr,Oti (10)  
re 

for  some special choices of coefficients {Or~}r=l ..... satisfying the normal iza t ion 
condi t ion 

m 
Qrl = 1. (11) 

r 

In t roduc ing  Eq. (8), Eq.  (10) becomes  

Si = ~ Qr 2 + 2k ~. QriQ~ (12) 
r r--t 

where  " r - t "  means  that  the sum runs over  every pair  of o ' -bonded  a toms r, t. 

Let  us first consider  the case k = 1. We  define a p -cen te red  M O  as one  having 
p and only p nonvanishing  coefficients. A monocen t r i c  nonbond ing  M O  centered  
on a tom r would  have Or~ = 1 and Os~ = 0 for  s # r and its contr ibut ion to S will 
thus be S~ = 1. A bicentric M O  (Ori # 0, Osi ~ 0 and O ,  = 0 for  t ~ r and s) centered  
on o--bonded a toms r, s gives again a contr ibut ion of 1: 

2 2 
= O si + 2OriOsl Si  Q ri "t- 

= (Or~ + Os3  2 = 1, 

where  use of Eq.  (11) has been  made.  However ,  if a toms r and s were  not  
o--bonded we would  get  

2 2 
S~ = Or~ + Osi 

( O r i  + OS i )  2 = 1 ,  

where  the equali ty only holds for Or~ = 0 or  Osi = 0. For  a tricentric M O  (Ori, 
Osi and Oti # O, and Ou~ = 0 for  u # r, s and t), a toms s and t being o--bonded 
to r, 

2 2 2 
Q sl + Q ti S i  : Q ri ~- -~- 2Q~iQsi + 2QriQa 

<- (O~ + Os~ + O , )  2 = 1, 

where  the equali ty holds for  O~ = 0 a n d / o r  Oa = 0. Aga in  the contr ibut ion would  
be  smaller if a toms s a n d / o r  t were no t  o ' -bonded  to r. In  general ,  it is clear 
that  the contr ibut ion S~ will be < 1  for  every p-cen te red  M O  with p > 2, and that  
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it will decrease as the MO spreads over the molecule, since the number of 
positive terms in the square of Eq. (11) not present in Eq. (12) will be larger. 
Hence, for k = 1 the localization procedure will tend to concentrate MO's  on 
atoms o--bonded between themselves and preferably over one or two centres. 

Giving parameter k a value less than 1, similar results are obtained, but now a 
greater weight is given to a monocentric MO than to a bicentric one: in the first 
case the contribution takes the maximum value (Si = 1) while in the second it 
depends on the asymmetry of the orbital, varying monotonically between (1 + 
k)/2 for a symmetric one and 1 for the monocentric limiting case. In the same 
way, tricentric MO's  are given a comparatively minor weight, and the same 
happens to more widely-spread orbitals. 

Inversely, a value greater than 1 for k would favour symmetric bicentric MO's  
as well as certain slightly peaked tricentric ones, as it can be seen in the limiting 
case L = T:  the contribution of a bicentric MO goes from 1/2 in the symmetric 
case to 0 in the most asymmetric one, that is, the monocentric MO; for tricentric 
orbitals, the maximal contribution (Si = 1/2) corresponds to the case Ori = 1/2 
and O~i = O~i = 1/4, atom r being the central one. 

Taking expression (9) for matrix L amounts to making k = 0 in expression (8), 
as we have already pointed, and therefore will tend to peak MO's  over one of 
the contributing atoms. In this case it can be shown that a p-centered MO whose 
coefficients are all equal would make a contribution of 1/p to the localization 

6 
sum . 

It is worth noting that, when we take for L the general expression (8), maximiz- 
ation of the localization sum amounts to minimizing the expression 

where " r~  t" means that the sum runs over every pair of not o--bonded atoms, 
and use of Eq. (11) has been made. This can be viewed as a topological version 
of Boys criterium, since it corresponds to taking for the integrals 

f(xr(rl))2r~2 d':l d~'2 r 2 

the following parametrization: 

0 if r=t, 
1 -  k if r and t are o--bonded, and 

1 otherwise. 

6 The contribution of a MO of this kind to the localization sum is, in general, 

c~ :>13 

where indices c~ and ~ run over AO's upon which MO 4~i is centered. 
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The former considerations suggest that an external localization criterium can be 
introduced within the same formalism we are discussing. Let  us build a localiz- 
ation matrix associated to a valence bond (VB) structure of the molecule under 
study in the following way: 

t rt ~ 1 

= 1/2 

= 0  

if atoms r and t are joined by a 7r-bond in the VB structure, 

if r = t and corresponds to a ~--lone pair, and 

otherwise. (13) 

With this choice for matrix L the localization sum (6) becomes 

1 S = Q2/+2 Z OriOtl 
i r ,  t 

(where the meaning of the labels of the summation signs is clear), so that its 
maximization will tend to localize MO's where the associated VB structure has 
a ~r-bond or a ~--lone pair. The reason for giving the value 1/2 to the non 
vanishing diagonal elements of L is that both types of LMO's  are thus given the 
same weight in the localization procedure. 

To end this discussion we will consider a simple example that illustrates how 
the choice of the localization matrix can condition the localization process. Let  
us localize the two degenerate highest occupied MO's (HOMO's)  of cyclo- 
butadiene. These two orbitals do not constitute any physical closed-shell system; 
however, they can be subjected to the mathematical process of localization, since 
this is applicable to any set of orthonormal MO's. Taking for matrix L the 
general expression (8) it is found that: 

(i) For 0 -< k < 1/2 localization leads to structure I (Fig. 1). 
(ii) For k > 1 /2  localization leads to structure II (Fig. 1). 
(iii) For k = 1/2 localization is indeterminate: the localization sum is invariant 
under orthogonal transformations of the HOMO's .  

0.71 0.00 0.00 0.71 

0.00 -0.71 "0.71 0.00 

I I  

Fig. 1 

0 . 5 0  0. 50 0 . 5 0  -0.  50 

-0.  50 -0.  50 0 . 5 0  

(=) 

-0.50 

(b) 
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I I I  ] IV 

Fig. 2 

I1 
273 

0.85 0.35 -0.15 0.35 

0.35 -0 .15  0.35 0.85 

VI 

Fig. 3 

0.71 0.71 0.00 0.00 

0.00 0.00 0.71 0.71 

On the other hand, taking for matrix L the external form (13) corresponding to 
the Kekul6 structures III or IV (Fig. 2) we obtain the LMO's II(a) and II(b) 
respectively. 

It is interesting to note that localizing one of the localized HOMO's with the 
remaining occupied CMO of cyclobutadiene, one obtains (see Fig. 3) a pair of 
equivalent tricentric (V) or bicentric (VI) LMO's, depending on whether k is 
<1 /2  or >1/2  (the negative coefficients that appear in the first case are needed 
in order to keep LMO's orthogonal). These structures could be considered as 
the LMO's of the closed-shell systems obtained when the HOMO's degeneracy 
is broken by a slight distortion of the Dah cyclobutadiene geometry to either 
rhomboidal (V) or rectangular (VI) D2h. For the external localization matrix, 
Kekul6 type LMO's as those depicted in VI are obtained, as could be expected. 

From this example one might conclude that the TLM's we have proposed give 
rather different results for a given problem. However cyclobutadiene is a most 
peculiar case inasmuch as those differences appear abnormally exaggerated: in 
fact, it will be seen in the following paper [11] that, in most cases, different 
localization matrices lead to very similar LMO's. 

4. Conclusions 

The intrinsic and external localization procedures proposed in this paper con- 
stitute the topological version of well-established localization criteria, and can 
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be  e x p e c t e d  to  possess  the  same  l i m i t a t i o n s - - b u t  also the  s ame  v i r t u e s - - a s  do  
Hi i cke l  ca lcu la t ions  of C M O ' s .  

A s  i l lus t ra ted  in the  fo l lowing  p a p e r  [11], t opo log ica l  loca l i za t ion  of 7r-systems 
is ab le  to  give resul ts  in g o o d  acco rdance  with  the  ones  o b t a i n e d  with p rev ious ly -  
used  vers ions  of  loca l iza t ion  cr i ter ia .  

T o p o l o g i c a l  loca l i za t ion  no t  only  could  be  c o m p a r a b l e ,  bu t  p r e f e r a b l e  to  m o r e  
soph i s t i ca t ed  p r o c e d u r e s ,  when  a r e f i nemen t  of the  ca lcu la t ion  b e y o n d  the  
t opo log i ca l  level  is an unneces sa ry  compl i ca t i on  tha t  obscures  the  i n t e r p r e t a t i o n  
of the  resul ts  (M~Sbius sys tems [17] and  non  per icycl ic  t opo log ie s  [18]). M o r e o v e r ,  
t opo log ica l  loca l i za t ion  wou ld  be  of ob l i ga to ry  use  for  the  acyclic r e f e r ence  
s t ruc tures  [19] used  in the  def in i t ion  of t opo log ica l  r e s o n a n c e  ene rgy  [20]. 

T o p o l o g i c a l  loca l ized  m o l e c u l a r  o rb i ta l s  of these  and  r e l a t e d  sys tems are  cur ren t ly  
u n d e r  inves t iga t ion .  
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